Infrastructure Investment, SME promotion and Education for Sustainable Growth

Naoyuki Yoshino

Dean, Asian Development Bank Institute (ADBI)

Professor Emeritus of Keio University

Direct Effect and Spill-over Effects

NOMURA JOURNAL OF ASIAN CAPITAL MARKETS

Attract Private F[•] Infrastructure Ir Injecting Spillov

Need for Infrastructure Investment

n Southeast Asia, USD 8 billion in infrastructure investments are implemented every year. However, it is expected that USD 210 billion infrastructure investment is needed every year. Public money is insufficient to satisfy Asia's infrastructure needs. In many developing countries in Asia, we observe heavy traffic congestion in cities; highways, trains and various modes of public transport are lacking. Public-Private Partnerships (PPPs) have been promoted for infrastructure development in India, Thailand and other places in Asia. However, most PPP projects were disappointing since the rate of return on infrastructure depends mainly on user charges, such as train fares and highway tolls. When the region was hit by economic crisis after the Lehman shock, the private sector withdrew from infrastructure investment. Risks associated with infrastructure were so large that private investors were hesitant to put their money in infrastructure.

It is well known that good infrastructure creates huge spillover effects in the

				and the second	
	1956-60	1961-65	1966-70	1971-75	1976-80
Direct effect	0.696	0.737	0.638	0.508	0.359
ndirect effect(Kp)	0.452	0.557	0.493	0.389	0.270
Indirect effect(L)	1.071	0.973	0.814	0.639	0.448
20% returned	0.305	0.306	0.261	0.206	0.144
increment	0.438	0.415	0.410	0.404	0.400
					2
	1986-90	1991-95	1996-00	2001-05	2006-10
Direct effect	0.215	0.181	0.135	0.114	0.108
Indirect effect(Kp)	0.174	0.146	0.110	0.091	0.085
Indirect effect(L)	0.247	0.208	0.154	0.132	0.125
20% returned	0.084	0.071	0.053	0.045	0.042

Table 1: Spillover Effects Estimated from a Macroeconomic Translog Production Function

Source: Authors' estimation based on Nakahigashi (2015)

Figure 4

Regional Disparities of Economic Effects large differences in Spillover effects 1990 2010

2010	Private	Public	Direct	Indirect	Effect	20%	Increment
Manufacturing	Сарна	Capital	Effect	Capital	Labor	Returned	(70)
Hokkaido	0.084	0.028	0.008	0.005	0.016	0.004	50.8
Tohoku	0.111	0.054	0.018	0.018	0.018	0.007	40.0
Northern Kanto	0.068	0.297	0.064	0.019	0.215	0.047	73.2
Southern Kanto <mark>(TOKYO)</mark>	0.052	0.235	0.054	0.006	0.175	0.036	66.5
Hokuriku	0.077	0.079	0.018	0.001	0.061	0.012	69.1
Tokai	0.093	0.339	0.089	0.057	0.192	0.050	55.9
Kinki	0.056	0.202	0.068	0.020	0.114	0.027	39.5
Chugoku	0.075	0.198	0.059	0.043	0.096	0.028	47.0
Shikoku	0.089	0.073	0.021	0.010	0.042	0.010	50.8
Northern Kyushu	0.093	0.120	0.037	0.028	0.055	0.017	45.5
Southern Kyushu	0.098	0.091	0.028	0.022	0.041	0.013	45.7

Case Study: Southern Tagalog Arterial Road (STAR), Philippines Micro-data

- The Southern Tagalog Arterial Road (STAR) project in Batangas province, Philippines (south of Metro Manila) is a modified Built-Operate-Transfer (BOT) project.
- The 41.9 km STAR tollway was built to improve road linkage between Metro Manila and Batangas City, provide easy access to the Batangas International Port, and thereby accelerate industrial development in Batangas and nearby provinces.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Property	Property	Business	Business	Regulatory	Regulatory	User	User
	tax	tax	tax	tax	fees	fees	charge	charge
Treatment D	1.55535	0.736	1.067	0.438	1.372	0.924	0.990	0.364
	(1.263)	(0.874)	(1.316)	(1.407)	(1.123)	(1.046)	(1.095)	(1.028)
Treatment D	0.421**	-0.083	1.189***	0.991**	0.248***	-0.019	0.408***	-0.010
\times Period _{t+2}	(0.150)	(0.301)	(0.391)	(0.450)	(0.084)	(0.248)	(0.132)	(0.250)
Treatment D	0.447**	0.574***	1.264***	1.502***	0.449**	0.515***	0.317**	0.434**
\times Period _{t+1}	(0.160)	(0.118)	(0.415)	(0.542)	(0.142)	(0.169)	(0.164)	(0.167)
Treatment D	0 107***	0.570**	1 110***	1 6/1***	0 604**	0 642***	0.250	0 400
×	0.497	(0.223)	1.440	1.041	0.004	0.042	0.330	0.422 (0.159)
Period _{t0}	(0.120)		(0.417)	(0.402)	(0.183)	(0.101)	(0.271)	(0.150)
Treatment D	1 201**	0.207	0 056**	1 770**	1 010**	0 020*	0.050	0 107
×	1.294	0.307	2.200	1.779	1.310	0.030	0.909	0.197
Period _{t-1}	(0.074)	(0.720)	(0.957)	(0.470)	(0.049)	(0.440)	(0.714)	(0.560)
Treatment D	1 162*	0.226	0 00 6 **	1 00/**	1 /00**	1 044**	0.041	0.247
×	1.103	0.330	2.220	1.004	1.402	1.044	(0.941)	0.247
Period _{t-2}	(0.045)	(0.594)	(0.971)	(0.551)	(0.034)	(0.413)	(0.704)	(0.551)
Treatment D	1 700*	0.450	0 705**	2 070***	1 001***	1 000***	4 700***	0.676
×	1.702	0.450	2.700	2.070	1.901	1.238	1./3Z (0.500)	0.070
Period _{t-3}	(0.960)	(0.576)	(1.001)	(0.544)	(0.030)	(0.309)	(0.596)	(0.515)
Treatment D								
×	2.573***	1.100	3.428***	2.560***	2.288***	1.509***	2.030***	0.787
Period _{t-4.}	(0.900)	(0.758)	(0.928)	(0.350)	(0.563)	(0.452)	(0.607)	(0.745)
forward	ζ, ,	· · ·	· · ·	Ň, Ž	, , ,	、 ,	ζ <i>γ</i>	(<i>,</i>
Construction		2.283**		1.577		1.207		1.942*
Construction		(1.172)		(1.196)		(0.855)		(1.028)
Constant	14.69***	-2.499	14.18***	2.230	13.66***	4.597	13.08***	-1.612
Constant	(0.408)	(8.839)	(0.991)	(9.094)	(0.879)	(6.566)	(0.649)	(7.84)
Ν	80	73	79	73	80	73	77	73
R^2	0.29	0.41	0.37	0.44	0.43	0.50	0.26	0.39

Difference-in-Difference Regression: Spillover

Clustered standard errors, corrected for small number of clusters; * Significant at 10%. ** Significant at 5%. *** Significant at 1%.

The Southern Tagalog Arterial Road (STAR Highway), Philippines, Manila Tax Revenues in three cities Yoshino and Pontines (2015) ADBI Discussion paper 549 表 8 フィリピンの STAR 高速道路の影響のない地域と比較した事業税の増加額

(単位:100 万ペソ)

	<i>t</i> ₋₂	<i>t</i> ₋₁	t_0	t_{+1}	<i>t</i> ₊₂	<i>t</i> ₊₃	<i>t</i> +4以降
Lipa 市	134.36	173.50	249.70	184.47	191.81	257.35	371.93
Ibaan 市	5.84	7.04	7.97	6.80	5.46	10.05	12.94
Batangas 市	490.90	622.65	652.83	637.89	599.49	742.28	1208.61

(出所) Yoshino and Pontines (2015)より筆者 成

Completion

Uzbekistan Railway

Divide regions affected and not affected by railway connection to "Treated group" and "Control group"

Naoyuki Yoshino - Umid Abidhadjaev. "Impact evaluation of infrastructure provision: case studies from Japan and Uzbekistan".	December 14-15, 2015.	Islamabad, Pakistan

Journal of Asian Economics 49 (2017) 1–11

Contents lists available at ScienceDirect

Journal of Asian Economics

Full length article

Naoyuki Yoshino^a, Umid Abidhadjaev^{b,*}

GDP	Term	Connectivity spillover effect	Regional spillover effect	Neighboring spillover effect			
Launching	Short	2.83***[4.48]	0.70[0.45]	1.33[1.14]			
Effects	Mid	2.5***[6.88]	0.36[0.29]	1.27[1.46]			
	Long	2.06***[3.04]	-0.42[-0.29]	2.29**[2.94]			
Anticipated	Short	0.19[0.33]	0.85[1.75]	-0.18[-0.20]			
ear	Mid	0.31[0.51]	0.64[1.30]	-0.02[-0.03]			
1 2	Long	0.07[0.13]	-0.006[-0.01]	0.50[0.67]			
Postponed E	ffects	1.76*[1.95]	-1.49[-0.72]	2.58*[2.03]			
Anticipated	Short	-1.54[-1.66]	1.42[0.78]	-1.32[-0.92]			
ars	Mid	0.32[0.44]	0.84[1.42]	0.13[0.13]			
2 ye	Long	0.11[0.15]	0.10[0.16]	0.87[1.19]			
Postponed Effects Note: t-values are in parenthesis, t		-0.14[-0.20] t-value measures how many standa	-1.71[-1.35] and errors the coefficient is away from	1.05[1.44]			

legend: * p<.1; ** p<.05; *** p<.01

Naoyuki Yoshino - Umid Abidhadjaev. "Impact evaluation of infrastructure provision: case studies from Japan and Uzbekistan".

Additional tax revenue, Regional GDP growth and Railway Company Net Income, LCU (bln.)

Period	Coefficients	T(20)*∆Y (Tax revenue)	ΔY Affected (Direct + Spillover effects)	Company net income (Revenue - Costs)
Short term (2009-2010)	2.83*** [4.48]	16.0	79.9	315.5
Mid-term (2009-2011)	2.48*** [6.88]	16.3	81.5	411.7
Long-term (2009-2012)	2.06*** [3.04]	14.7	73.5	509.0

Source: Authors' calculations

Japanese Bullet Train

Journal of Infrastructure, Policy and Development (2017) Volume 1 Issue 2, pp.x-x. doi: 10.24294/jipd.v1i2.69

ORIGINAL ARTICLE

Impact of infrastructure on tax revenue: Case study of highspeed train in Japan

Naoyuki Yoshino¹ and Umid Abidhadjaev²

¹ Dean, Asian Development Bank Institute ² Researcher, Asian Development Bank Institute

Impact of Kyushu Shinkansen Rail on CORPORATE TAX revenue during 1st PHASE OF OPERATION period $\{2004-2010\}$, mln. JP \overline{Y} (adjusted for CPI, base 1982)

COMPOSITION OF

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2
9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3

						GR	OUPS
Variable	Regression 1	Regression 2	Regression 3	Regression 4	Regression 5	Group2	Group5
I reatment2	-4772.54 [-0.2]					Kagoshima Kumamoto	Kagoshima Kumamoto
Number of tax							Fukuoka
payers	5.8952514* [1.95]	5.8957045* [1.95]	5.896112* [1.95]	5.8953585* [1.95]	5.8629645* [1.91]	Group3	Oita
Treatment3		-15947.8 [-0.87]				Kagoshima Kumamoto	wiyazaki
Treatment5			-13250.4 [-1.06]			Fukuoka	
Treatment7				-6883.09 [-0.7]		Group7	GroupCon Kagoshima
TreatmentCon					-28030.8 [-0.65]	Kagoshima	Kumamoto
Constant	-665679	-665418	-665323	-665358	-658553	Kumamoto	Fuкиока
	[-1.35]	[-1.35]	[-1.35]	[-1.35]	[-1.32]	Fukuoka Oita	Osaka Hyogo
Ν	799	799	799	799	799	Miyazaki	Okayama
R2	0.269215	0.269281	0.269291	0.269241	0.269779	Saga	Hiroshima
F	1.934589	2.106448	2.074548	2.100607	8.497174	Nagasaki	Yamaguchi

Note: Treatment2 = Time Dummy {1991-2003} x Group2. etc. t-values are in parenthesis. Legend: * p<.1; ** p<.05; *** p<.01. Clustering standard errors are used, allowing for heteroscedasticity and arbitrary autocorrelation within a prefecture, but treating the errors as uncorrelated across prefectures

Impact of Kyushu Shinkansen Rail on CORPORATE TAX revenue during 2nd PHASE OF OPERATION period {2011-2013}, mln. JPY (adjusted for CPI, base 1982)

1	1	1	1	1	1	1	1	1	1	1	1 19	1	1	1	1	1	2	2	2	22	2	2	2	2	2	2	2	2	2
9	9	9	9	9	9	9	9	9	9	9	9 94	9	9	9	9	9	0	0	0	0 0	0	0	0	0	0	0	0	0	0
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9	9	0	0	0	0 0	0	0	0	0	0	1	1	1	1
2	3	4	5	6	7	8	9	0	1	2	3	5	6	7	8	9	0	1	2	34	5	6	7	8	9	0	1	2	3
-	5		5	0	,	0	5	0	-	-	5	5	U	,	0	5	Ŭ	-	-	5 1	5	U	,	0	5	Ũ	-	-	5

Variable Treatment2	Regression 1 72330.012** [2.2]	Regression 2	Regression 3	Regression 4	Regression 5	Group2 Kagoshima Kumamoto	Group5 Kagoshima Kumamoto
Number of tax			C CC0000***		F 0040007***		Fukuoka
payers	5.5277056***	5.5585431***	5.558603***	5.5706545***	5.9640287***	Group3	Oita Miyazaki
Treatment3		104664.34* [2]				Kumamoto	Ινιιγάζακι
Treatment5			82729.673** [2.1]			Fukuoka	
Treatment7				80998.365** [2.34]		Group7	GroupCon Kagashima
TreatmentCon					179632 [1.58]	Kagoshima	Kumamoto
Constant	-568133.98**	-573747.28**	-574245.87**	-576867.56**	-642138.87**	Kumamoto	Fukuoka
	[-2.07]	[-2.08]	[-2.08]	[-2.09]	[-2.1]	Fukuoka Oita	Osaka Hyogo
Ν	611	611	611	611	611	Miyazaki	Okayama
R2	0.350653	0.352058	0.352144	0.352874	0.364088	Saga	Hiroshima
F	5.062509	5.486197	5.351791	5.431088	16.55518	Nagasaki	Yamaguchi

Note: Treatment2 = Time Dummy {1991-2003} x Group2. etc. t-values are in parenthesis. Legend: * p<.1; ** p<.05; *** p<.01. Clustering standard errors are used, allowing for heteroscedasticity and arbitrary autocorrelation within a prefecture, but treating the errors as uncorrelated across prefectures

COMPOSITION OF

GROUPS

Table 5. DID empirical results with outcome variable of personal income tax revenue using nearest-neighbor matching based on the Euclidian distance between mean tax revenues, 1982–1990

Scale of focus	Affected group of prefectures	Construction period (1991–2003)	Operation phase 1 (2004–2010)	Operation phase 2 (2011–2013)
Spillover effect by region	Treatment Group 1	27,822.92	-20,139.51	16,721.9
		[2.24]	[-1.81]	[1.42]
	Number of Observations	88	68	52
	Treatment Group 2	31,432.08**	-32,786.25*	51,056.62*
		[3.25]	[-2.32]	[2.42]
	Number of Observations	132	102	78
Spillover effect by adjacency	Treatment Group 3	18,821*	-26,698.04**	37,429.24**
		[2.01]	[-3.03]	[2.88]
	Number of Observations	220	170	130
	Treatment Group 4	15,472.3**	-23,431.25***	31,903.97***
		[2.26]	[-3.39]	[3.07]
	Number of Observations	308	238	182
Spillover effect by connectivity	Treatment Group 5	53,576.87**	-50,607.41**	125,253.54**
		[2.29]	[-2.52]	[2.63]
	Number of Observations	330	255	195

Table 6. DID empirical results with outcome variable of corporate income tax revenue using nearest-neighbor matching based on the Euclidian distance between mean tax revenues (1982–1990)

Scale of focus	Affected group of prefectures	Construction period (1991–2003)	Operation phase 1 (2004–2010)	Operation phase 2 (2011–2013)
Spillover effect by region	Treatment Group 1	12,132.33***	-6,292.71*	6,629.05
		[14.06]	[-2.71]	[2.04]
	Number of Observations	88	68	52
	Treatment Group 2	17,473.79**	-13,261.77	18,730.36**
		[3.56]	[-1.61]	[2.72]
	Number of Observations	132	102	78
Spillover effect by adjacency	Treatment Group 3	13,695.24***	-9,138.27	15,128.06**
		[3.37]	[-1.61]	[2.93]
	Number of Observations	220	170	130
	Treatment Group 4	10,902.40***	-6,382.728	15,794.54***
		[3.28]	[-1.54]	[3.84]
	Number of Observations	308	238	182
Spillover effect by connectivity	Treatment Group 5	-46,276.71	-46,440.24*	117,806.95**
		[-1.09]	[-1.79]	[2.28]
	Number of Observations	330	255	195

Total tax revenue, mln. JPY

American Journal of Economics 2016, 6(4): 189-199 DOI: 10.5923/j.economics.20160604.02

Explicit and Implicit Analysis of Infrastructure Investment: Theoretical Framework and Empirical Evidence

Naoyuki Yoshino¹, Umid Abidhadjaev^{2,*}

¹Asian Development Bank Institute, Tokyo, Japan ²Keio University, Graduate School of Economics, Tokyo, Japan

Infrastructure & Education

 Steady state equation in logarithmic form

 $lny(2010) - lny(1991) = (1 - e^{-\lambda t}) \left(\frac{\theta}{1 - \theta - \beta - \alpha}\right) ln(\varphi) + (1 - e^{-\lambda t}) \left(\frac{\beta}{1 - \theta - \beta - \alpha}\right) ln(1 - \varphi) + (1 - e^{-\lambda t}) \left(\frac{\theta + \beta}{1 - \theta - \beta - \alpha}\right) ln(\tau) + (1 - e^{-\lambda t}) \left(\frac{\alpha}{1 - \theta - \beta - \alpha}\right) ln(s(1 - \tau)) - (1 - e^{-\lambda t}) \frac{\alpha + \beta + \theta}{(1 - \theta - \beta - \alpha)} ln(n + \delta + g) - (1 - e^{-\lambda t}) lny(1991)$

NOTE:

Context: 44 developing countries, 1991-2010 **Methodology:** Production function approach **Point of novelty and findings:**

Study incorporated infrastructure variable into neoclassical growth framework and demonstrated that controlling for share of working age population with university level of education infrastructure investment to GDP ratio constituted statistically significant determinant of accumulated growth rate of GDP per capita

Estimation of The Neoclassical Growth Model with					
Infrastructure Investment					
Dependent variable: log difference GDP per capita in 1991-					
2010					
Regression number	REG.1	REG.2	REG.3		
Variables	Coef.	Coef.	Coef.		
InY_1991	-0.06	-0.14	-0.14		
	(-0.54)	(-1.35)	(-1.38)		
ln(n+g+d)	-3.09	-5.75	-4.36		
	(-0.59)	(-1.23)	(-0.77)		
ln(Kg)	0.23	0.31	0.53		
	(1.17)	(2.00)	(3.30)		
In(Sec)			0.00		
			(0.46)		
ln(Kg)xln(Sec)	0.20				
	(1.59)				
ln(Uni)			0.21		
			(2.07)		
ln(Kg)xln(Uni)		0.24			
		(2.76)			
Constant	-0.28	0.56	0.48		
	(-0.33)	(0.69)	(0.57)		
Number of observations	44.00	44.00	44.00		
R-squared	0.21	0.30	0.30		
F-statistic	2.62	4.14	3.29		

Enhance regional economy Start up businesses, farmers, SMEs

Naoyuki Yoshino · Sahoko Kaji Editors

Hometown Investment Trust Funds

A Stable Way to Supply Risk Capital

2) Springer

Hometown Investment Trust Funds

A Stable Way to Supply Risk Capital

Yoshino, Naoyuki; Kaji, Sahoko (Eds.) 2013, IX, 98 p. 41 illus.,20 illus. in color

Available Formats:

ebook Hardcover Springer

Japan, Cambodia Vietnam, Peru

Hometown investment trust funds a new way to finance for Wind power generators, solar power panels etc.

SME =small and medium-sized enterprise.

Source: Yoshino and Taghizadeh-Hesary (2014).

Investment in SMEs and start up businesses

Agricultural Funds Beans and Wine CEUT

Infrastructure Bond (large Investors and Individuals)

- 1, Various maturities (10 years, 15 years, 20 years)
- 2, Rate of return (+Spillover tax revenues)

Infrastructure bonds for

banks, insurance companies, Pension funds

- 3, Sales channels to individuals(Post office, Regional banks)
- 4, Internet, mobile phone (For retail investors)

Hometown Investment Trust Funds

5, Small scale renewable energy

Public-Private Partnership (PPP) Give incentives to operating companies

Payoff table for infrastructure operating entity and investors

	Normal Case	Effort Case
Normal Case	(50, r) Operating Investors Entity	(50, αr) Operating Investors Entity
Effort Case	(100, r) Operating Investors Entity	(100 , <i>αr</i>) Operating Investors Entity

Nakahigashi, M and Yoshino, N. (2016) "Changes in Economic Effect of Infrastructure and Financing Method", <u>Public Policy Review</u>, Vol.12, No.1.

Yoshino, Naoyuki and Masaki Nakahigashi (2004) "The Role of Infrastructure in Economic Development", <u>ICFAI Journal of Managerial Economics</u>, 2, pp. 7-24

Yoshino, N. and Pontines, Victor (2015) "The Highway-Effect on Public Finance: Case of the STAR Highway in the Phillippines", GIE | AAA Special Kick-off Edition, GIE Network publishing.

Yoshino, Naoyuki and Victor Pontines (2015) "The Highway Effect on Public Finance: Case of the STAR Highway in the Philippines", <u>Asian Development Bank Institute</u> (ADBI) Working Paper No.549.

Yoshino, Naoyuki and Umid Abidhadjaev (2017), "An impact evaluation of investment in infrastructure: The case of a rail way connection in Uzbekistan". Journal of Asian Economics, 49, 1-11, 2017

Yoshino, Naoyuki and Umid Abidhadjaev (2017), "Impact of infrastructure on tax revenue: Case study of high-speed train in Japan", <u>Journal of Infrastructure, Policy and Development</u>, Vol.1, Issue 2.

Yoshino, Naoyuki, Masaki Nakahigashi and Victor Pontines (2017), "Attract Private Financing to Infrastructure Investment by Injecting Spillover Tax Revenues", <u>Nomura Journal of Asian Capital Markets</u>, Spring, Vol.1, No.2.